Abstract

The objective of this study was to evaluate the accuracy of inline milk fat-to-protein (F:P) data to detect hyperketonemia (HYK) in herds with automated milking systems (AMS). The F:P ratio has been investigated as a tool for detecting HYK with moderate accuracy in past studies, but inline F:P data in AMS may also be useful for HYK screening. To assess the accuracy of these data in commercial settings, we monitored 484 cows from 9 AMS herds for their first 3 wk of lactation, taking blood samples once per week (n = 1,427). Positive cases of HYK were defined by whole-blood β-hydroxybutyrate (BHB) concentrations ≥1.2 or ≥1.4 mmol/L. Milk data were collected from the AMS software on each farm for each cow and converted into 4 different F:P values: (1) value from the same day as the BHB test; (2) 5-d centered-moving average (CMA); (3) 5-d backward-moving average (BMA); (4) 5-d forward-moving average (FMA). In linear regression models, all 4 values were associated with BHB, but slope estimates varied and R2 were low: same day (slope = 0.95, R2 = 0.07), CMA (slope = 1.05, R2 = 0.07), BMA (slope = 0.65, R2 = 0.04), and FMA (slope = 1.23, R2 = 0.09). In logistic regression models, the odds of having HYK (BHB ≥1.2 mmol/L) increased with every 0.1-unit increase from the mean F:P ratio (1.16) using same-day values (odds ratio = 1.35, 95% confidence interval = 1.25-1.47) and CMA (odds ratio = 1.39, 95% confidence interval = 1.27-1.51). The same increase in F:P from mean BMA (1.14) and FMA (1.17) was associated with 1.22 and 1.49 times the odds of HYK, respectively. For all 4 F:P variations, we evaluated the sensitivity, specificity, positive predictive value, and negative predictive value of different F:P thresholds with HYK status. As the F:P threshold increased from 1.17 to 1.50, sensitivity decreased (range: 77 to 9%) but specificity increased (range: 58 to 96%). Same-day and CMA F:P cutoffs at which a balance was reached between sensitivity and specificity ranged from 1.18 to 1.22; however, even at these values we found high rates of false positives and negatives (range: 31-39%). These results suggest that inline milk F:P data from inconsistently calibrated sensors should not be used alone to detect HYK in AMS herds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call