Abstract

Dystrophin is selectively localized in the postsynaptic density of neurons in cerebral cortex, hippocampus and cerebellum. Here, we show by double-immunofluorescence staining that dystrophin is extensively colocalized with GABAA receptor subunit clusters in these brain regions. To determine the relevance of this observation, we investigated in mdx mice, which provide a model of Duchenne muscular dystrophy, whether the absence of dystrophin affects the synaptic clustering of GABAA receptors. A marked reduction in the number of clusters immunoreactive for the alpha1 and alpha2 subunits was observed in, respectively, cerebellum and hippocampus of mdx mice, but not in striatum, which is normally devoid of dystrophin. Furthermore, these alterations were not accompanied by a change in gephyrin staining, although gephyrin is colocalized with the majority of GABAA receptor clusters in these regions. These results indicate that dystrophin may play an important role in the clustering or stabilization of GABAA receptors in a subset of central inhibitory synapses. These deficits may underlie the cognitive impairment seen in Duchenne patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.