Abstract

One of the main problems in quantum information systems is the presence of errors due to noise, and for this reason quantum error-correcting codes (QECCs) play a key role. While most of the known codes are designed for correcting generic errors, i.e., errors represented by arbitrary combinations of Pauli X , Y and Z operators, in this paper we investigate the design of stabilizer QECC able to correct a given number eg of generic Pauli errors, plus eZ Pauli errors of a specified type, e.g., Z errors. These codes can be of interest when the quantum channel is asymmetric in that some types of error occur more frequently than others. We first derive a generalized quantum Hamming bound for such codes, then propose a design methodology based on syndrome assignments. For example, we found a [[9,1]] quantum error-correcting code able to correct up to one generic qubit error plus one Z error in arbitrary positions. This, according to the generalized quantum Hamming bound, is the shortest code with the specified error correction capability. Finally, we evaluate analytically the performance of the new codes over asymmetric channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.