Abstract
A significant part of the energy dissipation in static complementary metal-oxide-semiconductor (CMOS) structures is due to short-circuit currents. In this paper, an accurate analytical model for the CMOS short-circuit energy dissipation is presented. First, the short-circuit energy dissipation of the CMOS inverter is modeled. The derived model is based on analytical expressions of the inverter output waveform which include the influences of both transistor currents and the gate-to-drain coupling capacitance. Also, the effect of the short-circuiting transistor's gate-source capacitance on the short-circuit energy dissipation, is taken into account. The /spl alpha/-power law MOS model that considers the carriers' velocity saturation effect of submicrometer devices is used. Second, the inverter model is extended to static CMOS gates by using reduction techniques of series- and parallel-connected transistors. The results produced by the suggested model for a commercial 0.8-/spl mu/m process, show very good agreement with SPICE simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.