Abstract

Neuroinflammation contributes to neurodegenerative disorders, including Alzheimer's disease (AD). Gut microbes are involved in regulating systemic inflammation. Short-chain fatty acids (SCFAs), which are among the many metabolites released by gut microbes, can cross the blood-brain barrier (BBB) and interact with microglia. High concentrations of individual SCFAs decrease the inflammatory responses of peripheral monocytes; therefore, we hypothesized that SCFAs act on their own or in combinations to reduce the inflammatory response of microglia. Cultured human THP-1 monocytic cells and differentiated human HL-60 myelomonocytic cells were used to model select immune functions of human microglia. Acetate, propionate, butyrate, formate, and valerate were added to cells alone or as a mixture containing SCFAs at an approximate physiological concentration ratio. The SCFA mixture, as well as several individual SCFAs at the highest concentrations used in the mixture (15–236 μM), decreased the secretion of interleukin (IL)-1β, monocyte chemoattractant protein (MCP)-1, tumor necrosis factor (TNF)-α, and cytotoxins by immune-stimulated THP-1 cells. GLPG 0974, a free fatty acid receptor (FFAR) 2/3 antagonist, did not block the inhibitory effect of the SCFA mixture on IL-1β secretion by THP-1 cells while blocking the inhibitory effect of formate alone. We demonstrated that formate and valerate alone reduced the phagocytic activity of immune-stimulated THP-1 cells. Formate, but not valerate, alone also inhibited the N-formylmethionine-leucyl-phenylalanine (fMLP)-induced respiratory burst of HL-60 cells, reducing the production of reactive oxygen species (ROS). Our data indicate that SCFAs could regulate select microglial functions that are disrupted in AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.