Abstract

Strepsirrhines are of considerable interest for understanding the evolution of cone photoreceptors because they represent the most ancestral living primates. The retina of nocturnal Strepsirrhines is reported to contain a single population of medium/long wavelength (MW/LW) cones whereas short wavelength (SW) cones are totally absent. The area centralis of nocturnal Strepsirrhines also lacks the degree of central specialization seen in the fovea of diurnal primates. In this study of a nocturnal Strepsirrhine, the gray mouse lemur (Microcebus murinus), we used specific antibodies that recognize SW and MW/LW opsins to determine the presence of different cone subtypes and their distribution in relation to that of rods and ganglion cells. The results are compared to two diurnal Haplorhine species, a New World (Callithrix jacchus) and an Old World (Macaca fascicularis) monkey. In the mouse lemur, both antibodies to MW/LW cone opsin (COS-1 and CERN956) label the same population of cones. A small proportion of SW cones is only stained by the JH455 antiserum whereas the monoclonal OS-2 antibody shows negative staining. These two antibodies label the same SW cone population in other primates. The extracellular matrix of all cones is also labeled by the peanut agglutinin (PNA) lectin. In mouse lemur retinal wholemounts, peak cone density is localized at the area centralis and ranged from 7,500 to 8,000 cones/mm(2). SW cones represent less than 0.2 % of the total cone population and are mainly located in the nasal part of the retina. SW cones show an irregular distribution and densities never exceed 49 cones/mm(2). The distribution of neurons in the ganglion cell layer shows a distinct centroperipheral gradient with a peak of 28,000 cells/mm(2) at the area centralis. Rod distribution shows a centroperipheral gradient with the peak (850,000 rods/mm(2)) including and extending slightly dorsal to the area centralis. The theoretical spatial resolution of the mouse lemur (4.9 cycles/degree) is slightly lower to that of other nocturnal primates. The densities of rods, cones, and ganglion cell layer neurons represent a compromise between spatial resolution and sensitivity for both photopic and scotopic vision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call