Abstract

In this study, we investigated the individual and combined effects of microplastics (MPs) and chromium (Cr) on the freshwater water flea Daphnia magna by measuring mortality, bioaccumulation, antioxidative response, multixenobiotic resistance activity, and sestrin-related mitochondrial biogenesis in short-term assays and in vivo endpoints including reproduction and adult survival rate in long-term assays. Exposure to MPs, Cr, and their combination caused significant deleterious effects and acute toxicity in D. magna. Alterations in oxidative stress occurred in the groups treated with MPs and Cr alone and together. However, upon co-exposure to MPs, the Cr concentration, measured by inductively coupled plasma optical emission spectroscopy, decreased, suggesting that MPs and Cr interact with each other. Based on enzymatic activities, we noted a decrease in MP egestion via inhibition of P-glycoprotein activity in the MP-exposed groups, and multidrug resistance–associated protein activity increased in some of the MP-exposed animals depending on Cr concentration. On the other hand, MP exposure seemed to lead to mitochondrial transcription dysfunction induced by Cr via sestrin-related mitochondrial biogenesis. Overall, these results indicate that co-exposure to MPs and Cr causes acute toxicity in D. magna but lacks the chronic toxicity (21 days) and mitochondrial dysfunction caused by Cr exposure alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.