Abstract

We examined the role of ultraviolet radiation (UVR) in persons diagnosed with multiple sclerosis (MS) in four different populations, Italians, Danish, White and African Americans. We tested whether variation in UVR as determined by seasons (short term variation) and solar cycles (long term variation) is related to MS birth month and to survival as measured by lifespan. Cases were selected from three Italian MS Case Registries (2,737); from the United States National Center for Health Statistics (56,020); and from the Danish Multiple Sclerosis registry (15,900). Chi-square tests were used to study the pattern of month of birth distribution in patients with MS comparing with general population data. T-tests were employed to study solar cycles association with lifespan. A surplus of births was observed in June for White Americans. A decrease of births in October and November, though not significant after multiple testing correction, was observed in the three populations. In White American with MS overall, males and females, we found that solar cycle is associated with lifespan. We found that season and solar cycles have some role in MS susceptibility and life duration. However, this is an exploratory analysis and further work is needed to discern the association.

Highlights

  • Solar radiation supplies the biosphere with energy and synchronizes circadian rhythms, but may actively modify genomes, both through mutation and epigenetic mechanisms [1]

  • We found a statistically significant association in White Americans (Table 4): those born in solar cycles MAX years have a significantly shorter lifespan (−0.64 year, p ≤ 0.0001) than those born in solar cycles MIN years

  • Even if the results are not replicated in all the population studied, we did find a significant signal in White American males and females and we believe this is worth reporting

Read more

Summary

Introduction

Solar radiation supplies the biosphere with energy and synchronizes circadian rhythms, but may actively modify genomes, both through mutation and epigenetic mechanisms [1]. A Canadian study using data from Canada and UK and combined with previously reported data from Denmark and Sweden [8] found a statistically significant difference in seasonal pattern of births among MS patients, but to estimate the numbers of MS cases born in a particular month, the authors summed number of births over the years 1926–1970 without taking into account year of birth. It has been argued [10] that biases could have arisen as MS cases born in one year were weighted relative to persons with completely different follow-up time.

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call