Abstract

Activation of the opioid receptor results in short-term inhibition of intracellular cAMP levels followed by receptor desensitization and subsequent increase of cAMP above the control level (adenylyl cyclase superactivation). Using adenovirus to deliver pertussis toxin-insensitive mutants of the alpha-subunits of G(i/o) that are expressed in neuroblastoma Neuro2A cells (Galpha(i2), Galpha(i3), and Galpha(o)), we examined the identities of the G proteins involved in the short- and long-term action of the delta-opioid receptor (DOR). Pertussis toxin pretreatment completely abolished the ability of [d-Pen(2), d-Pen(5)]-enkephalin (DPDPE) to inhibit forskolin-stimulated intracellular cAMP production. Expression of the C352L mutant of Galpha(i2), and not the C351L mutants of Galpha(i3) or Galpha(o), rescued the short-term effect of DPDPE after pertussis toxin treatment. The ability of Galpha(i2) in mediating DOR inhibition of adenylyl cyclase activity was also reflected in the ability of Galpha(i2), not Galpha(i3) or Galpha(o), to coimmunoprecipitate with DOR. Coincidently, after long-term DPDPE treatment, pertussis toxin treatment eliminated the antagonist naloxone-induced superactivation of adenylyl cyclase activity. Again, only the C352L mutant of Galpha(i2) restored the adenylyl cyclase superactivation after pertussis toxin treatment. More importantly, the C352L mutant of Galpha(i2) remained associated with DOR after long-term agonist and pertussis toxin treatment whereas the wild-type Galpha(i2) did not. These data suggest that Galpha(i2) serves as the signaling molecule in both DOR-mediated short- and long-term regulation of adenylyl cyclase activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.