Abstract

The number of workers potentially exposed to nanoparticles (NPs) during industrial processes is increasing, although the toxicological properties of these compounds still need to be fully characterized. As NPs may be aerosolized during industrial processes, inhalation represents their main route of occupational exposure. Here, the short- and long-term pulmonary toxicological properties of titanium dioxide were studied, using conventional and molecular toxicological approaches. Fischer 344 rats were exposed to 10 mg/m3 of a TiO2 nanostructured aerosol (NSA) by nose-only inhalation for 6 h/day, 5 days/week for 4 weeks. Lung samples were collected up to 180 post-exposure days. Biochemical and cytological analyses of bronchoalveolar lavage (BAL) showed a strong inflammatory response up to 3 post-exposure days, which decreased overtime. In addition, gene expression profiling revealed overexpression of genes involved in inflammation that was maintained 6 months after the end of exposure (long-term response). Genes involved in oxidative stress and vascular changes were also up-regulated. Long-term response was characterized by persistent altered expression of a number of genes up to 180 post-exposure days, despite the absence of significant histopathological changes. The physiopathological consequences of these changes are not fully understood, but they should raise concerns about the long-term pulmonary effects of inhaled biopersistent NPs such as TiO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.