Abstract

AbstractClimate change is resulting in global changes to sea level and wave climates, which in many locations significantly increase the probability of erosion, flooding and damage to coastal infrastructure and ecosystems. Therefore, there is a pressing societal need to be able to forecast the morphological evolution of our coastlines over a broad range of timescales, spanning days-to-decades, facilitating more focused, appropriate and cost-effective management interventions and data-informed planning to support the development of coastal environments. A wide range of modelling approaches have been used with varying degrees of success to assess both the detailed morphological evolution and/or simplified indicators of coastal erosion/accretion. This paper presents an overview of these modelling approaches, covering the full range of the complexity spectrum and summarising the advantages and disadvantages of each method. A focus is given to reduced-complexity modelling approaches, including models based on equilibrium concepts, which have emerged as a particularly promising methodology for the prediction of coastal change over multi-decadal timescales. The advantages of stable, computationally-efficient, reduced-complexity models must be balanced against the requirement for good generality and skill in diverse and complex coastal settings. Significant obstacles are also identified, limiting the generic application of models at regional and global scales. Challenges include the accurate long-term prediction of model forcing time-series in a changing climate, and accounting for processes that can largely be ignored in the shorter term but increase in importance in the long term. Further complications include coastal complexities, such as the accurate assessment of the impacts of headland bypassing. Additional complexities include complex structures and geology, mixed grain size, limited sediment supply, sources and sinks. It is concluded that with present computational resources, data availability limitations and process knowledge gaps, reduced-complexity modelling approaches currently offer the most promising solution to modelling shoreline evolution on daily-to-decadal timescales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call