Abstract

The Senegal River delta in West Africa, one of the finest examples of “wave-influenced” deltas, is bounded by a spit periodically breached by waves, each breach then acting as a shifting mouth of the Senegal River. Using European Re-Analysis (ERA) hindcast wave data from 1984 to 2015 generated by the Wave Atmospheric Model (WAM) of the European Centre for Medium-Range Weather Forecasts (ECMWF), we calculated longshore sediment transport rates along the spit. We also analysed spit width, spit migration rates, and changes in the position and width of the river mouth from aerial photographs and satellite images between 1954 and 2015. In 2003, an artificial breach was cut through the spit to prevent river flooding of the historic city of St. Louis. Analysis of past spit growth rates and of the breaching length scale associated with maximum spit elongation, and a reported increase in the frequency of high flood water levels between 1994 and 2003, suggest, together, that an impending natural breach was likely to have occurred close to the time frame of the artificial 2003 breach. Following this breach, the new river mouth was widened rapidly by flood discharge evacuation, but stabilised to its usual hydraulic width of <2 km. In 2012, severe erosion of the residual spit downdrift of the mouth may have been due to a significant drop (~15%) in the longshore sand transport volume and to a lower sediment bypassing fraction across the river mouth. This wave erosion of the residual spit led to rapid exceptional widening of the mouth to ~5 km that has not been compensated by updrift spit elongation. This wider mouth may now be acting as a large depocentre for sand transported alongshore from updrift, and has contributed to an increase in the tidal influence affecting the lower delta. Wave erosion of the residual spit has led to the destruction of villages, tourist facilities and infrastructure. This erosion of the spit has also exposed part of the delta plain directly to waves, and reinforced the saline intrusion within the Senegal delta. Understanding the mechanisms and processes behind these changes is important in planning of future shoreline management and decision-making regarding the articulations between coastal protection offered by the wave-built spit and flooding of the lower delta plain of the Senegal River.

Highlights

  • The impacts of human activities on coasts are often accompanied by a lack of understanding of the consequences of these activities on the hydrodynamic and sediment redistribution processes that shape coasts [1,2]

  • The West African coast is characterised by a plethora of river deltas, the largest of which are those of the Niger, Senegal and Volta (Figure 1)

  • We describe the recent dynamics of the spit within the framework of development of the Senegal delta and aim at disentangling processes of natural forcing from those of the impact of this breach

Read more

Summary

Introduction

The impacts of human activities on coasts are often accompanied by a lack of understanding of the consequences of these activities on the hydrodynamic and sediment redistribution processes that shape coasts [1,2]. Much of the West African coast (Figure 1). The West African coast is characterised by a plethora of river deltas, the largest of which are those of the Niger, Senegal and Volta (Figure 1). Abundant sand supplies and strong wave-induced longshore drift have favoured the construction of numerous sand barriers, including at the mouths of these three deltas. These barriers are major settlement sites on the coast as they provide higher-lying areas above lagoons and wetlands, while acting as valuable aquifers. On the coast of Senegal, the barriers are generally elongate to curvilinear spits formed at the mouths of tidal or fluvial ria-like embayments

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call