Abstract
Embayed beach dynamics differ from open beaches due to the nature of headland control. Their resultant morphologies and morphodynamic behaviour are poorly understood due in part to a critical lack of surfzone and nearshore bathymetry observations. This study describes the morphodynamic storm response of a high-energy intermediate, 850m long embayed beach over a three week period spanning a cluster of storms. A headland and subaqueous ridge protects the northern end of the beach, resulting in an alongshore wave height gradient. Contrary to existing beach state conceptual models, under energetic forcing the beach did not ‘reset’ or enter a ‘cellular mega-rip’ beach state. The protected northern end persisted in a low energy state, while the wave exposed southern section transitioned from transverse-bar-and-rip to a complex double-bar system, a process previously undescribed in the literature. Bar-rip morphology at the exposed end of the beach migrated offshore to greater depths, leaving an inner-reflective beach and longshore trough, while a mega-rip channel with 3m relief developed at the exposed headland. The number of rip channels remained near constant over multiple storm events. Offshore sediment flux was 350m3/m at the exposed headland and 20m3/m at the protected end. Alongshore bathymetric non-uniformity decreased over the sub-aerial beach and inner surfzone, but increased in the outer surfzone and beyond. Suggested mechanisms for the persistence of 3D morphology during the cluster of storms include: (i) wave refraction to shore normal within the embayment; (ii) alongshore energy gradients; and (iii) pre-existing bar-rip morphology. Formation of the complex multi-bar state may be related to antecedent morphology, headland geometry, substrate gradient and localised hydrodynamic interactions near the headland. A new conceptual embayed beach state model is proposed for asymmetric, transitional embayed beaches. The model describes a pre-storm embayment where beach state changes gradually alongshore, while the post-storm embayment exhibits an extreme alongshore morphological gradient, from low-energy intermediate to a “complex multi-bar and mega-rip” state at the exposed end of the beach. Further observations are required to determine the prevalence of this high-energy state and to provide inputs to future numerical models designed to examine the dominant forcing controls involved in its formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.