Abstract

An open ocean shoreface typical of long, wave-dominated sandy coasts has been examined through a combination of extensive field measurements of wave and current patterns with computations of marine bedload transport and sedimentation. Sand transport on the upper shoreface is dominantly controlled by waves with only secondary transport by currents. Sand on the middle and lower shoreface, as well as the inner continental shelf is entrained by storm waves and transported by a complex pattern of bottom boundary layer currents. Storm events have been studied and modeled for the shoreface off Tiana Beach, Long Island. The dominant effect of coastal frontal storms is to cause significant shore-parallel bedload transport with important shore-normal secondary components. These storms tend to result in net offshore transport of sand removed from the beach and surf zone systems. The bedload transport during a storm is convergent on the shoreface leading to accretion. Most accretion occurs on the upper shoreface with lesser deposits covering the middle and lower shoreface as well as the inner continental shelf. Longer-term equilibrium can be maintained by slow return of sand up the shoreface during non-storm conditions. Annual and geologic time-scale budgets of shoreface sand transport and sedimentation yield equilibrium, net accretion or net deposition. The annual balance results from an integration of the event-scale bedload transport patterns and morphologic responses. These processes and responses have feedback mechanisms which stabilize the system over longer, but not geologic, time scales. Geologic time scale balances are controlled by relative sea level changes and relative availability of sediment supply with the event-scale shoreface sand transporting processes providing the mechanism to produce the changes in long-term morphology and sedimentation patterns. In the area of study, the long-term pattern is one of net shoreface erosion, and the permanent loss of sand to the shelf floor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.