Abstract

The Florida coast is one of the most species-rich ecosystems in the world. This paper focuses on the sensitivity of the habitat of threatened and endangered shorebirds to sea level rise induced by climate change, and on the relationship of the habitat with the coastline evolution. We consider the resident Snowy Plover (Charadrius alexandrinus nivosus), and the migrant Piping Plover (Charadrius melodus) and Red Knot (Calidris canutus) along the Gulf Coast of Mexico in Florida. We analyze and model the coupled dynamics of habitat patches of these imperiled shorebirds and of the shoreline geomorphology dictated by land cover change with consideration of the coastal wetlands. The land cover is modeled from 2006 to 2100 as a function of the A1B sea level rise scenario rescaled to 2 m. Using a maximum-entropy habitat suitability model and a set of macroecological criteria we delineate breeding and wintering patches for each year simulated. Evidence of coupled ecogeomorphological dynamics was found by considering the fractal dimension of shorebird occurrence patterns and of the coastline. A scaling relationship between the fractal dimensions of the species patches and of the coastline was detected. The predicted power law of the patch size emerged from scale-free habitat patterns and was validated against 9 years of observations. We predict an overall 16% loss of the coastal landforms from inundation. Despite the changes in the coastline that cause habitat loss, fragmentation, and variations of patch connectivity, shorebirds self-organize by preserving a power-law distribution of the patch size in time. Yet, the probability of finding large patches is predicted to be smaller in 2100 than in 2006. The Piping Plover showed the highest fluctuation in the patch fractal dimension; thus, it is the species at greatest risk of decline. We propose a parsimonious modeling framework to capture macroscale ecogeomorphological patterns of coastal ecosystems. Our results suggest the potential use of the fractal dimension of a coastline as a fingerprint of climatic change effects on shoreline-dependent species. Thus, the fractal dimension is a potential metric to aid decision-makers in conservation interventions of species subjected to sea level rise or other anthropic stressors that affect their coastline habitat.

Highlights

  • The Florida coast is one of the most species-rich ecosystems in the world

  • The Florida Peninsula and the Atlantic coasts are the main wintering grounds for the migratory Piping Plover (PIPL) and Red Knot (REKN), which seem less constrained than the Snowy Plover (SNPL) by the mineralogical properties of the beach substrate captured by the geology layer (Convertino et al 2010,2011b)

  • We indicate the fractal dimension of the breeding and wintering occurrences with dimension of the box-counting (Db) and the fractal dimension of the coastline with Df derived from box-counting analysis

Read more

Summary

Introduction

The Florida coast is one of the most species-rich ecosystems in the world. This paper focuses on the sensitivity of the habitat of threatened and endangered shorebirds to sea level rise induced by climate change, and on the relationship of the habitat with the coastline evolution. REKN uses the Florida Gulf beaches as stop-over areas for about 3 weeks during its migration between South America and North America’s Big Lakes region and Atlantic coast (Harrington 2001). This is considered as the wintering period of the REKN in Florida. Humphries et al (2010) showed that Brownian movement is sufficiently efficient for locating abundant prey This theory explains the clustered patterns of resources in landscapes that may be different from the pattern of species occurrence.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.