Abstract
The measurement of the individual charged particles especially muons in an extended air shower (EAS) resulting from primary cosmic rays provides important distinguishing parameters to identify the chemical composition of the cosmic primary particles. For Neutrino Telescope experiments like Baikal-GVD, the estimation of underwater muon flux is of importance to study atmospheric muons. In this paper, a GEANT4-based simulation is presented to estimate the atmospheric muon flux underwater taking Baikal-GVD as an example. The location of the Baikal-GVD experiment at Lake Baikal provides a unique opportunity to study the passage of muons through its northern shore and the water. The muons arriving from the north direction will lose more energy as compared to those arriving from the south. An approximation for the northern shore is also simulated in the GEANT4 geometry and the results of the simulation are compared with the measurements from the NT-96 detector. The results of the simulations are consistent with the shore shadow observed in the measurements in the NT-96. This approach can also be used to propagate the muons from generators like CORSIKA through long distances in matter like water, ice, earth, etc. for simulations in such experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.