Abstract

The shooting method is commonly used to solve the linear parallel-flow stability problem for axisymmetric jets, i.e., a flow having one inhomogeneous direction. The present extension to two inhomogeneous directions – i.e., a bi-global stability problem – is motivated by inviscid non-axisymmetric jets. The azimuthal direction is Fourier transformed to obtain a set of coupled one-dimensional shooting problems that are solved by two-way integration from both radial boundaries – centreline and far field. The overall problem is formulated as one of iterative root-finding to match the solutions from the two integrations. The approach is validated against results from the well-established matrix method that discretizes the domain to obtain a matrix eigenvalue problem. We demonstrate very good agreement in two jet problems – an offset dual-stream jet, and a jet exiting from a nozzle with chevrons. A disadvantage of the shooting method is its sensitivity to the initial guess of the solution; however, this becomes an advantage when the need arises to track an eigensolution in a sweep over a problem parameter – say with increasing offset in the dual-stream jet, or with downstream distance from the nozzle exit. We demonstrate the performance of the shooting method in such tracking tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call