Abstract

Semaphorin6A (Sema6A) and its PlexinA2 (PlxnA2) receptor canonically function as repulsive axon guidance cues. To understand downstream signaling mechanisms, we performed a microarray screen and identified the "clutch molecule" shootin-1 (shtn-1) as a transcriptionally repressed target. Shtn-1 is a key proponent of cell migration and neuronal polarization and must be regulated during nervous system development. The mechanisms of Shtn-1 regulation and the phenotypic consequences of loss of repression are poorly understood. We demonstrate shtn-1 overexpression results in impaired migration of the optic vesicles, lack of retinal pigmented epithelium, and pathfinding errors of retinotectal projections. We also observed patterning defects in the peripheral nervous system. Importantly, these phenotypes were rescued by overexpressing PlxnA2. We demonstrate a functional role for repression of shtn-1 by PlxnA2 in development of the eyes and peripheral nervous system in zebrafish. These results demonstrate that careful regulation of shtn-1 is critical for development of the nervous system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call