Abstract

All plant shoots can be described as a series of developmental modules termed phytomers, which are produced from shoot apical meristems. A phytomer generally consists of a leaf, a stem segment, and a secondary shoot meristem. The fate and activity adopted by these secondary, axillary shoot meristems is the major source of evolutionary and environmental diversity in shoot system architecture. Axillary meristem fate and activity are regulated by the interplay of genetic programs with the environment. Recent results show that these inputs are channeled through interacting hormonal and transcription factor regulatory networks. Comparison of the factors involved in regulating the function of diverse axillary meristem types both within and between species is gradually revealing a pattern in which a common basic program has been modified to produce a range of axillary meristem types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.