Abstract

Effects of two shoot densities (14 and 44 shoots/vine) and two crop levels (one and two fruit clusters per shoot) on yield, pruning weight, crop load, and juice and wine quality of field-grown `Sauvignon blanc' grape (Vitis vinifera L.) were studied in a factorial experiment over 3 years. Main shoot length, lateral shoot length and number, shoot diameter, leaf area per shoot, and specific leaf weight were greater at the lower compared with the higher shoot density for all years whereas pruning weight was significantly increased only in the third year. Crop yield increased proportionally with the number of clusters, up to 44 clusters per vine, by both shoot and cluster thinning; a lower rate of yield increase was apparent when the number of clusters per vine was increased further, probably because of increasing source limitation. Berry maturation was delayed in the 44 shoots per vine treatment. Unchanged soluble solids, higher total acidity, and lower pH in the 44-shoot vine treatment in the third year indicated that the effect of cluster number on the must quality was not due to delayed maturation. No effect of cluster number per shoot on vegetative parameters was apparent. Berry size and number were affected by cluster thinning only in the 44 shoot/vine treatment. Both the number of shoots per vine and the number of clusters per shoot affected wine sensory attributes. Herbaceous aroma scores increased with increasing pruning weight. The wine sensory evaluation score decreased with increasing crop load. Total wine sensory scores decreased with decreasing leaf area to fruit weight ratio below ≈18 cm2·g-1, whereas a critical value of the crop to pruning weight ratio, for wine quality, was not apparent. Crop load expressed as crop to pruning weight ratio (kg·kg-1) was highly correlated with fruit weight to leaf area ratio (g·cm-2) (r2 = 0.86), providing a biological rationale for the relevance of crop load and wine quality relations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.