Abstract
When linear acoustic theory is applied to the thickness noise problem of a supersonic propeller, it can give rise to a surface on which the pressure is discontinuous or singular. A method is described for obtaining the equation of this surface (when it exists), and the pressure field nearby; jumps, logarithms and inverse square roots occur, and their coefficients may be calculated exactly. The special case of a blade with a straight radial edge gives a cusped cone, whose sheets, each with a different type of discontinuity or singularity in pressure, are separated by lines of cusps; the coefficients in formulae for the pressure near the surface tend to infinity as a cusp line is approached, in proportion to the inverse quarter power of distance from the line. These results determine regions of space where nonlinear effects are important, and they suggest a strong analogy with sonic boom.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.