Abstract

BackgroundThe ShockOmics study (ClinicalTrials.gov identifier NCT02141607) is a multicenter prospective observational trial aimed at identifying new biomarkers of acute heart failure in circulatory shock, by means of a multiscale analysis of blood samples and hemodynamic data from subjects with circulatory shock.Methods and DesignNinety septic shock and cardiogenic shock patients will be recruited in three intensive care units (ICU) (Hôpital Erasme, Université Libre de Bruxelles, Belgium; Hospital Universitari Mutua Terrassa, Spain; Hôpitaux Universitaires de Genève, Switzerland). Hemodynamic signals will be recorded every day for up to seven days from shock diagnosis (time T0). Clinical data and blood samples will be collected for analysis at: i) T1 < 16 h from T0; ii) T2 = 48 h after T0; iii) T3 = day 7 or before discharge or before discontinuation of therapy in case of fatal outcome; iv) T4 = day 100.The inclusion criteria are: shock, Sequential Organ Failure Assessment (SOFA) score > 5 and lactate levels ≥ 2 mmol/L. The exclusion criteria are: expected death within 24 h since ICU admission; > 4 units of red blood cells or >1 fresh frozen plasma transfused; active hematological malignancy; metastatic cancer; chronic immunodepression; pre-existing end stage renal disease requiring renal replacement therapy; recent cardiac surgery; Child-Pugh C cirrhosis; terminal illness. Enrollment will be preceded by the signature of the Informed Consent by the patient or his/her relatives and by the physician in charge.Three non-shock control groups will be included in the study: a) healthy blood donors (n = 5); b) septic patients (n = 10); c) acute myocardial infarction or patients with prolonged acute arrhythmia (n = 10).The hemodynamic data will be downloaded from the ICU monitors by means of dedicated software. The blood samples will be utilized for transcriptomics, proteomics and metabolomics (“-omics”) analyses.DiscussionShockOmics will provide new insights into the pathophysiological mechanisms underlying shock as well as new biomarkers for the timely diagnosis of cardiac dysfunction in shock and quantitative indices for assisting the therapeutic management of shock patients.

Highlights

  • The ShockOmics study (ClinicalTrials.gov identifier NCT02141607) is a multicenter prospective observational trial aimed at identifying new biomarkers of acute heart failure in circulatory shock, by means of a multiscale analysis of blood samples and hemodynamic data from subjects with circulatory shock

  • The clinical protocol “ShockOmics: Multiscale Approach to the Identification of Molecular Biomakers in Acute Heart Failure Induced by Shock”, (ClinicalTrials.gov identifier NCT02141607) is part of a complex project which combines the observational clinical study described in this manuscript with animal research and in vitro experiments to investigate the fundamental mechanisms of acute heart failure (AHF) in circulatory shock

  • Discussion we discuss the solutions that were devised to address the main technical issues faced during the set-up stage of the clinical protocol, such as: high fidelity hemodynamic waveform download from the bedside monitor and storage in a database; guidelines for the treatment of blood samples to be used for –omics analyses; the definition of control groups; the inclusion in the study of a hemorrhagic shock group and the relevant limitations; the timeline of the project

Read more

Summary

Introduction

The ShockOmics study (ClinicalTrials.gov identifier NCT02141607) is a multicenter prospective observational trial aimed at identifying new biomarkers of acute heart failure in circulatory shock, by means of a multiscale analysis of blood samples and hemodynamic data from subjects with circulatory shock. The clinical protocol “ShockOmics: Multiscale Approach to the Identification of Molecular Biomakers in Acute Heart Failure Induced by Shock”, (ClinicalTrials.gov identifier NCT02141607) is part of a complex project which combines the observational clinical study described in this manuscript with animal research and in vitro experiments to investigate the fundamental mechanisms of acute heart failure (AHF) in circulatory shock. The goals of the project are the identification of novel biomarkers of shock-induced AHF, the formulation of a multiscale approach to the diagnosis and interpretation of the disease, and the design of new technologies and therapeutic strategies for improving the delivery of care in shock patients. Recent trials have reported lower mortality rates around 30 % [10,11,12]

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call