Abstract

An experimental study of the mixing enhancement and changes in flow structure arising from the interaction of weak normal shock waves with turbulent jets was conducted. The experimental configuration was an axisymmetric jet processed by weak normal shock waves propagating in a shock tube along the jet axis. Experiments involved three different jet gases: helium, air, and carbon dioxide, each in a coflowing air stream, with nominal jet fluid to ambient density ratios of 0.14, 1.00, and 1.52, respectively. The jet local Reynolds number was Reδ≈25 000 and the nominal oncoming shock Mach numbers were 1.23 and 1.45. Planar laser Mie light scattering from mineral oil smoke was utilized for flow visualization and for obtaining jet fluid concentration distributions across diametric planes of jets. Analysis of the spatial probability density function (pdf) of jet fluid concentration indicates that the average helium jet fluid concentration levels decrease and become more uniform in the regions processed by the shock waves. The degree of mixing enhancement increases with increasing shock strength, and amounts to nearly 30% for the stronger shock (M=1.45). The passage of a shock through low-density (helium) jets induces the formation of a flow structure that resembles a large-scale, toroidal vortex. The air and carbon dioxide jets exhibit neither a vortex-like structure or a significant change in mixing upon shock passage, unlike the helium jets. A comparison of the results for the helium and carbon dioxide jets indicates that the reversal of the density ratio between the jet and the surroundings, and the consequent change in the sign of baroclinic vorticity does not yield similar effects in terms of flow structure or mixing enhancement. The average concentration behind the shock wave decreases for both air and helium jets with increasing distance behind the shock. These features are explained qualitatively in terms of a simple characteristic time scale argument. The spatially averaged scalar dissipation calculated from the concentration data decreases for both the air and helium jets due to shock passage. The change is less marked for the air jet than for the helium jet for a given shock strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call