Abstract

We investigate shock-induced deformation of columnar nanocrystalline Al with large-scale molecular dynamics simulations and implement orientation mapping (OM) and selected area electron diffraction (SAED) for microstructural analysis. Deformation mechanisms include stacking fault formation, pronounced twinning, dislocation slip, grain boundary (GB) sliding and migration, and lattice or partial grain rotation. GBs and GB triple junctions serve as the nucleation sites for crystal plasticity including twinning and dislocations, due to GB weakening, and stress concentrations. Grains with different orientations exhibit different densities of twins or stacking faults nucleated from GBs. GB migration occurs as a result of differential deformation between two grains across the GB. High strain rates, appropriate grain orientation and GBs contribute to deformation twinning. Upon shock compression, intra-grain dislocation and twinning nucleated from GBs lead to partial grain rotation and the formation of subgrains, while whole grain rotation is not observed. During tension, stress gradients associated with the tensile pulse give rise to intra-grain plasticity and then partial grain rotation. The simulated OM and SAED are useful to describe lattice/grain rotation, the formation of subgrains, GB migration and other microstructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.