Abstract

A newly designed rotor was modeled from the well-known radially stacked NASA rotor 37 by applying a three-dimensional shape to the original blade stacking line. A considerable curvature toward the direction of rotor rotation was given to the new blade. A three-dimensional numerical model, developed and validated using a commercial computational fluid dynamics Reynolds-averaged Navier―Stokes code, was adopted to predict the flowfield inside the new rotor. Steady-viscous-flow calculations were run at the design speed of the baseline configuration. Compared with rotor 37, the new rotor showed a higher efficiency, mainly due to a three-dimensional modification of the shock structure. At the outer span, the new rotor developed a blade-to-blade shock front located more downstream than in the baseline rotor, with a considerable impact on the flowfield near the casing. Computational fluid dynamics flow visualizations showed a less detrimental shock/boundary-layer/tip-clearance interaction at low-flow operating conditions, with a considerable reduction of the low-momentum-fluid region after the shock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.