Abstract
We study analytically and numerically the generation of shock waves in a quasi one-dimensional Bose-Einstein condensate (BEC) made of dilute and ultracold alkali-metal atoms. For the BEC we use an equation of state based on a 1D nonpolynomial Schrodinger equation (1D NPSE), which takes into account density modulations in the transverse direction and generalizes the familiar 1D Gross-Pitaevskii equation (1D GPE). Comparing 1D NPSE with 1D GPE we find quantitative differences in the dynamics of shock waves regarding the velocity of propagation, the time of formation of the shock, and the wavelength of after-shock dispersive ripples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.