Abstract

We revisit the problem on the inner structure of shock waves in simple gases modelized by the Boltzmann kinetic equation. In a paper by Pomeau [Y. Pomeau, Transp. Theory Stat. Phys. 16, 727 (1987)10.1080/00411458708204311], a self-similarity approach was proposed for infinite total cross section resulting from a power-law interaction, but this self-similar form does not have finite energy. Motivated by the work of Pomeau [Y. Pomeau, Transp. Theory Stat. Phys. 16, 727 (1987)10.1080/00411458708204311] and Bobylev and Cercignani [A. V. Bobylev and C. Cercignani, J. Stat. Phys. 106, 1039 (2002)10.1023/A:1014037804043], we started the research on the rigorous study of the solutions of the spatial homogeneous Boltzmann equation, focusing on those which do not have finite energy. However, infinite energy solutions do not have physical meaning in the present framework of kinetic theory of gases with collisions conserving the total kinetic energy. In the present work, we provide a correction to the self-similar form, so that the solutions are more physically sound in the sense that the energy is no longer infinite and that the perturbation brought by the shock does not grow at large distances of it on the cold side in the soft potential case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.