Abstract

We consider the classic problem of a one-dimensional steady shock-wave solution of the Boltzmann kinetic equation utilizing a new type of 13-moment approximation proposed by Oguchi (1997). The model, unlike previous ones, expresses the collision term in an explicit function of the molecular velocity. This enables us to examine directly the nature of the singularity of the distribution function to this particular problem caused by the vanishing molecular velocity. We can thus obtain moment integrals directly because of its explicit expression. The principal value is utilized for the moment integral to cope with the singularity, and we can have five relations for five unknown functions to be determined with respect to the coordinate x. These relations can be reduced to a first-order differential equation that is solved to provide the familiar smooth monotonic transition from the upstream supersonic state to the subsonic downstream state. Computed values of shock thickness for various shock Mach numbers agree well with existing results obtained by different methods to the certain Mach number beyond which no solution exists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call