Abstract

Previous detailed studies of the interaction of a shock wave with a perforated sheet considered the impact of a shock wave on a plate with regularly spaced slits giving area blockages of 60 and 67%, at various angles of incidence, and resulting in both regular and Mach reflection. The current work extends this study to a much wider variety of plate geometries. Blockage ratios of 20, 25, 33, 50, and 67 and inclinations of 45, 60, 75, and 90° to the shock wave were tested. Four different thicknesses of plate were tested at the same frontal blockage in order to assess the effects of gap guidance. Tests were conducted at two shock Mach numbers of 1.36 and 1.51 (inverse pressure ratios of 0.4 and 0.5). It is found that secondary reflected and transmitted waves appear due to the complex interactions within the grid gaps, and that the vortex pattern which is generated under the plate is also complex due to these interactions. The angle of the reflected shock, measured relative to the plate, decreases with plate blockage and the angle of inflow to the plate reduces with increasing blockage. By analysing the flow on the underside of the plate the pseudo-steady flow assumption is found to be a reasonable approximation. Both the pressure difference and the stagnation pressure loss across the plate are evaluated. It is found that over the range tested the plate thickness has a minimal effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.