Abstract

Underwater shock wave technology can realize dynamic rock fracture, which is helpful to increase oil and gas reservoir permeability. It can realize the efficient exploitation of medium and low maturity oil and gas resources. In practical application, the shock wave parameters require not only high intensity but also safety and controllability. To meet these requirements, insensitive composite energetic materials driven by electrical wire explosion plasma were proposed, which is one of the most promising methods. However, when in use, the load assembly process containing wires and energetic materials is complex. In this paper, a new type of energetic material load is proposed, using non-penetrating wire to drive composite energetic material. It can simplify the production process of the energetic load and produce acceptable shock wave parameters. The test results show that both the energy deposition of the wire and the shock wave intensity decrease under a non-penetrating wire structure. However, the shock wave intensity is still higher than that of the underwater electrical wire explosion. Based on schlieren diagnosis, it is found that the composite energetic material is gradually driven, and the energy release is not concentrated. In addition, the "non-wire" structure driving condition was discussed in contrast. Under this condition, the process of ionization channel establishment in composite energetic materials is random. The shock wave intensity is weak because the composite energetic material is in the process of slow detonation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.