Abstract

A method to detect the discontinuity of a shock wave from computational fluid dynamics (CFD) data was developed based on the theory of characteristics and was adopted to replace the inaccurate method that involves observation of the location of steep spatial gradient with respect to the primitive variables, such as pressure. A shock wave is mathematically defined as a convergence of characteristics, in which each type of Riemann invariant is conserved within each characteristic. In the vector field of the characteristics, such convergences are interpreted as critical lines of the streamlines, which are easily identified by calculating the eigenvectors of the vector field of propagation velocity of the Riemann invariant. The use of a triangular cell system enables unique determination of the linearized vector field in each cell and enables analytical identification of the critical line within this field. Shock waves can be successfully extracted using this method. The method can be extended to the detection of moving shock waves by considering the coordinate moving with the shock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.