Abstract

To understand inelastic deformation mechanisms for shocked hexagonal-close-packed (hcp) metals, shock compression and release wave profiles, previously unavailable for hcp single crystals, were measured for c-axis magnesium crystals. The results show that the elastic-inelastic loading response is strongly time-dependent. Measured release wave profiles showed distinct peaked features, which are unusual for inelastic deformation during unloading of shocked metals. Numerical simulations show that pyramidal slip provides a reasonably good description of the inelastic loading response. However, {101¯2} twinning is needed to explain the unloading response. The results and analysis presented here provide insight into the relative roles of dislocation slip and deformation twinning in the response of shocked hcp metals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.