Abstract

In this study, mechanically alloyed CoCrFeMnNi high-entropy alloy (HEA) powders were compacted using static and shock wave compaction methods followed by pressureless sintering. The microstructural evolution and the mechanical properties were analyzed using optical microscopy, scanning electron microscopy, finite element method simulations, and tensile tests. The alloy consists of an FCC phase with a minor amount of ZrO2 in the as-milled and sintered condition. The presence of ZrO2 is due to the contamination during milling, and it led to the formation of composite microstructure after sintering. The static compaction of the alloyed powders resulted in an increase in compaction density (~ 85 to 88%) with the increasing pressure (1–3GPa), and the shock wave compaction of the alloyed powders resulted in the high relative density (~ 95%) with relatively fine and isolated pores. After sintering, almost full densification (~ 99.5%) with smaller grain size and better mechanical properties was achieved in the shock wave compacted specimens as compared to the sintering of static compacted specimens. The sintered shock wave compacted specimen exhibited high yield strength of ~ 630MPa and uniform strain distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.