Abstract
Abstract Shock wave chemistry, a new scientific trend, deals with investigations of chemical aspects of the substance state under this new type of effect. Indeed, shock wave effect is not a greater imposition than pressure and temperature actions. Characteristic features of the effect are the tremendous rates of substance loading and subsequent unloading. The effects result in a substance in a strongly non- equilibrium state. The lifetime of the state is governed by the relaxation process of those phenomena which are provoked by shock waves in the substance. For instance, in the case of substance consisting of complex molecules with a large number of internal degrees of freedom, differing strongly in excitation times, all kinetic parts of the shock energy are at first absorbed by the translational degrees of freedom inside the shock wave front. Then, the energy is redistributed to the vibrational degrees of freedom. The non-equilibrium state time is not longer than the excitation time of the most slowly excited vibrational degrees of freedom (1010-10−9 s). The same order of magnitude is the relaxation time of liquid substance polarization caused by dipolar molecules mechanically turning under the shock discontinuity zone effect. In polymers the zone turns some separate groups of polymer molecule atoms. In such a case the relaxation period, on the contrary, may last as long as it can. As far as “hot are concerned, their lifetime is determined by thermal relaxation regularities and it depends on their size. The hot spots in solids appear during the shock compression process at the sites of an imperfect substance structure. In liquids the hot spots can orighate when a shock wave front passes through negative density fluctuations. It transforms the fluctuations of very small size and of high probability into some positive temperature regions of large size and extremely low probability at equilibrium state behind the wave front. The hot spots in perfect solids (possibly in liquids too) appear due to the effect of shear stresses in shock front. Pointed and lengthy defects of solid structure occur under the effect. The lengthy defects appear in the shock wave front due to the transition from one-dimensional to volume compression. The transition takes place if the wave intensity is larger than the dynamic elastic limit of the solid under investigation. In brittle materials the transition results in their grinding into fragments and in the relative displacement of the fragments. Some liquid melted layers of substance appear between the fragments in the process of displacement. Their lifetime is also determined by the thermal relaxation regularities and probably is small. Nevertheless, the layers obviously govern the spall strength of brittle solids and promote solid-phase shock reactions. The defects created in solids by the shock effect can exist for a very long time if the solid substance residual temperature is lower than its recrystallization temperature. Therefore, solid substance treatment by shocks of proper intensity can increase their chemical reactivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.