Abstract

An approximate analytical solution is presented for the attenuation of planar shock waves in channels with perforated walls. The problem is considered as quasi-one-dimensional. Good agreement is found between the theoretical results and available experimental data regarding the rate of shock wave attenuation within the range of initial shock Mach numbers between 1.1 and 4 and perforation ratios between 4.5 × 10−3 and 0.53. A correlation for the discharge coefficient of a single hole perforation is presented which gives quantitatively good agreement with particular experimental observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.