Abstract

The objective of the research outlined in this paper is to provide experimental and computational data on initiation, propagation, and stability of gaseous fuel–air detonations in tubes with U-bends implying their use for design optimization of pulse detonation engines (PDEs). The experimental results with the U-bends of two curvatures indicate that, on the one hand, the U-bend of the tube promotes the shock-induced detonation initiation. On the other hand, the detonation wave propagating through the U-bend is subjected to complete decay or temporary attenuation followed by the complete recovery in the straight tube section downstream from the U-bend. Numerical simulation of the process reveals some salient features of transient phenomena in U-tubes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call