Abstract

Autoignition delay time measurements were performed for toluene/oxygen/argon mixtures at pressures of approximately 1.0 and 3.0 atm, temperatures of 1312–1713 K, oxygen mole fractions of 1.8–18.0%, and equivalence ratios of 0.5, 1.0, and 2.0 in a shock-tube facility. Ignition times were determined using electronically excited CH* and OH* emissions and reflected shock pressure monitored through the shock-tube sidewall. The dependence of the ignition delay times upon pressure, oxygen mole fraction, and equivalence ratio has been characterized. An empirical correlation for the ignition delay has been deduced by linear regression of the ignition data. Experimental results are compared to simulations of three recent chemical kinetic mechanisms for the oxidation of toluene. The overall trends are captured fairly well by the mechanisms. In addition, the important reaction pathways have been elucidated by both flux and sensitivity analyses. Ultraviolet and visible chemiluminescence of toluene combustion were meas...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.