Abstract

The overall rate constant for the reaction ethanol + OH → products was determined experimentally from 900 to 1270 K behind reflected shock waves. Ethan(18)ol was utilized for these measurements in order to avoid the recycling of OH radicals following H-atom abstraction at the β-site of ethanol. Similar experiments were also performed with unlabeled ethan(16)ol in order to infer the rate constant that excludes reactivity at the β-site. The two data sets were used to directly infer the branching ratio for the reaction at the β-site. Experimental data in the current study and in previous low-temperature studies for the overall rate constant are best fit by the expression koverall = 5.07 × 10(5) T[K](2.31) exp(608/T[K]) cm(3) mol(-1) s(-1), valid from 300 to 1300 K. Measurements indicate that the branching ratio of the β-site is between 20 and 25% at the conditions studied. Pseudo-first-order reaction conditions were generated using tert-butylhydroperoxide (TBHP) as a fast source of (16)OH with ethanol in excess. (16)OH mole fraction time-histories were measured using narrow-line width laser absorption near 307 nm. Measurements were performed at the linecenter of the R22(5.5) transition in the A-X(0,0) band of (16)OH that does not overlap with any absorption features of (18)OH, thus producing a measurement of the (16)OH mole fraction that is insensitive to the presence of (18)OH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.