Abstract

We study the shock dynamics for a recently proposed system of conservation laws (Murisic et al. [J. Fluid Mech., 17 (2013), pp. 203--231]) describing gravity-driven thin-film flow of a suspension of negatively buoyant particles down an incline. When the particle concentration is above a critical value, singular shock solutions can occur. We analyze the Hugoniot topology associated with the Riemann problem for this system, describing in detail how the transition from a double shock to a singular shock happens. We also derive the singular shock speed based on a key observation that the particles pile up at the maximum packing fraction near the contact line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.