Abstract
Molybdenum (Mo) is a strategic metal for the manufacture of aerospace equipment, satellite components, and vehicle armor. Thus, understanding its behaviors under harsh conditions like shock compression is crucial for its practical utilization. Through molecular dynamic simulations, we have explored the mechanical responses and microstructural evolutions of nano-polycrystalline (NPC) Mo under different shock intensities, with grain sizes ranging from 5 to 33 nm. Our study reveals that grain size considerably influences the Hugoniot data and waveform of NPC Mo. NPC Mo with a smaller grain size exhibits higher compressibility and lower Hugoniot shear stress. As the grain size increases, the presence of a double-wave structure becomes more pronounced. Additionally, with the increase in shock intensity, there is a reduction in the shock front width. Significantly, when the shock stress ranges from approximately 60 to 100 GPa, twinning structures are detected in samples with grain sizes ranging from 10 to 33 nm. Moreover, the elevated temperature behind the shock wave further promotes detwinning reactions. When the shock stresses exceed 100 GPa, twinning–detwinning as well as amorphization-recrystallization become the predominant deformation mechanisms, almost unaffected by grain size. As the shock stress exceeds 250 GPa, the atoms in the samples become completely disordered. These findings provide new insights into the mechanical responses as well as the microstructural evolutions of NPC Mo under shock compression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.