Abstract

The meniscus is a multifunctional fibrocartilage tissue in the knee joint which stables joint movement, bears load and absorbs impact. Improper collisions will cause damage to meniscus tissue and lose its original functionality. However, it is difficult to fully evaluate the mechanical properties of the meniscus based on static test results alone. In this study, Split Hopkinson Pressure Bar (SHPB) and hydraulic material testing system (MTS) were utilized to examine the quasi-static and dynamic properties of the porcine meniscus along with two different orientations. The results showed that the meniscus is a strain rate sensitive material and its mechanical properties mainly depend on the orientation of collagen fiber bundles in the peripheral direction. The meniscus tissue did not show obvious yield characteristics under quasi-static test conditions. However, the meniscus showed clear yield behavior under dynamic loading. When the strain rate increased, the elastic modulus of the radial meniscus remained around 35 MPa while the elastic modulus of the axial meniscus increased from 30 MPa to 80 MPa. This study demonstrates that the meniscus is sensitive to strain rate at both dynamic and quasi-static conditions, and the meniscus is an anisotropic biological tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call