Abstract

Rough terrains pose a major threat for the stability and safety of autonomous vehicles especially at high speeds. The mobile robotics community has traditionally treated rough terrain segments as hazards to be avoided and models the risk involved in traversing such segments as a characteristic of terrain surface and vehicle design. However, the risk due to such terrain patches depends greatly on the vehicle speed and can be easily reduced by regulating this speed. In this paper, we address shock experienced by the vehicle which is a major aspect of the risk. We present a local planning approach that incorporates the relation between shock, speed and terrain roughness into its cost function, thus resulting in plans that reduce shock. Terrain roughness estimates are made based on the Difference of Normals technique. We experimentally validate our approach in a real world setup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.