Abstract

AbstractThe present work investigates the influence of bubble clustering on the propagation of shock waves in bubbly liquids. A continuum model is developed to describe the macroscopic response of a bubbly liquid with a cluster structure, using a two-step homogenization technique. The proposed methodology allows us to simulate shock wave propagation over long distances with a small computation time and to study the effect of bubble clustering on the shock structure. It is shown that the typical length of the shock profile is related to the global response of the clusters instead of the single-bubble dynamics, as in homogeneous bubbly flows. The accuracy of the proposed modelling is assessed through comparisons with axisymmetric simulations, in which clusters are directly specified, with given positions and sizes, and with experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.