Abstract

Shock-darkening, the melting of metals and iron sulfides into a network of veins within silicate grains, altering reflectance spectra of meteorites, was previously studied using shock physics mesoscale modeling. Melting of iron sulfides embedded in olivine was observed at pressures of 40–50 GPa. This pressure range is at the transition between shock stage 5 (CS5) and 6 (CS6) of the shock metamorphism classification in ordinary and enstatite chondrites. To better characterize CS5 and CS6 with a mesoscale modeling approach and assess post-shock heating and melting, we used multi-phase (i.e. olivine/enstatite, troilite, iron, pores, and plagioclase) meshes with realistic configurations of grains. We carried out a systematic study of shock compression in ordinary and enstatite chondrites at pressures between 30 and 70 GPa. To setup mesoscale sample meshes with realistic silicate, metal, iron sulfide, and open pore shapes, we converted backscattered electron microscope images of three chondrites. The resolved macroporosity in meshes was 3–6%. Transition from shock CS5 to CS6 was observed through (1) the melting of troilite above 40 GPa with melt fractions of ~0.7–0.9 at 70 GPa, (2) the melting of olivine and iron above 50 GPa with melt fraction of ~0.001 and 0.012, respectively, at 70 GPa, and (3) the melting of plagioclase above 30 GPa (melt fraction of 1, at 55 GPa). Post-shock temperatures varied from ~540 K at 30 GPa to ~1300 K at 70 GPa. We also constructed models with increased porosity up to 15% porosity, producing higher post-shock temperatures (~800 K increase) and melt fractions (~0.12 increase) in olivine. Additionally we constructed a pre-heated model to observe post-shock heating and melting during thermal metamorphism. This model presented similar results (melting) at pressures 10–15 GPa lower compared to the room temperature models. Finally, we demonstrated dependence of post-shock heating and melting on the orientation of open cracks relative to the shock wave front. In conclusion, the modeled melting and post-shock heating of individual phases were mostly consistent with the current shock classification scheme (Stöffler et al., 1991, 2018).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.