Abstract

Shock waves can achieve extreme states of pressure and temperature, of particular interest because those conditions can result in non-equilibrium material dynamics that evolve on ultrafast timescales. Examples of such phenomena include shock-induced chemistry and phase transitions. Traditional plate impact methods lack the necessary time and space resolution needed to observe the onset of ultrafast nanoscale phenomena. Sub-picosecond time scale and nanometer spatial scale shock compression and diagnostics methods have been developed to surmount such difficulties. This paper reviews a number of nanoscale shock wave generation methods, as well as the diagnostics that are applicable at these restrictive time and spatial scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.