Abstract

The life distribution H(t) of a device subject to shocks governed by a Poisson process and pure birth process is considered as a function of probabilities Pk of not surviving the first k shocks. It is shown that some properties of a discrete distribution {P'k} are reflected on properties of the continuous life distribution H(t). In particular, if Pk has the discrete NBUFR properties, then H(t) has the continuous NBUFR and NBAFR properties. The NBUFR and NBAFR life distributions are obtained under suitable assumptions on birth rate and the probability of surviving a given number of shocks in a pure birth shock model. Some other general forms of shock models are also considered

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.