Abstract

Quantum-mechanical calculations based on density functional theory are used to study the shock response of the polymeric cubic gauche phase of nitrogen (cg-N), proposed as an alternative energetic ingredient to those used in conventional explosive formulations. The shocked polymeric nitrogen undergoes multiple complex phase transformations and spontaneously forms defects. The occurrence of these dynamic phenomena absorbs the shock energy which subsequently slows the compression wave. Additionally, no reaction occurs immediately behind the shock front; rather reactions result from the unraveling of the material at the free edge of the filament opposite to shock propagation. As the material unravels, numerous polyatomic transients are formed, including five-membered rings and polymeric chains, which subsequently undergo secondary reactions to form the final diatomic products. The speed at which these reactions propagate through the material is much slower than the sound speed, and combined with the slowing compression wave, indicates that the material may not detonate under these conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.