Abstract

We present the first Herschel spectroscopic detections of the [OI]63 and [CII]158 micron fine-structure transitions, and a single para-H2O line from the 35 x 15 kpc^2 shocked intergalactic filament in Stephan's Quintet. The filament is believed to have been formed when a high-speed intruder to the group collided with clumpy intergroup gas. Observations with the PACS spectrometer provide evidence for broad (> 1000 km s^-1) luminous [CII] line profiles, as well as fainter [OI]63micron emission. SPIRE FTS observations reveal water emission from the p-H2O (111-000) transition at several positions in the filament, but no other molecular lines. The H2O line is narrow, and may be associated with denser intermediate-velocity gas experiencing the strongest shock-heating. The [CII]/PAH{tot) and [CII]/FIR ratios are too large to be explained by normal photo-electric heating in PDRs. HII region excitation or X-ray/Cosmic Ray heating can also be ruled out. The observations lead to the conclusion that a large fraction the molecular gas is diffuse and warm. We propose that the [CII], [OI] and warm H2 line emission is powered by a turbulent cascade in which kinetic energy from the galaxy collision with the IGM is dissipated to small scales and low-velocities, via shocks and turbulent eddies. Low-velocity magnetic shocks can help explain both the [CII]/[OI] ratio, and the relatively high [CII]/H2 ratios observed. The discovery that [CII] emission can be enhanced, in large-scale turbulent regions in collisional environments has implications for the interpretation of [CII] emission in high-z galaxies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call