Abstract

Shock compression experiments on a new kind of 47Zr45Ti5Al3V alloys at pressures between 28 and 200 GPa are performed using a two-stage light gas gun. The Hugoniot data are obtained by combining the impedance-match method and the electrical probe technique. The relationship between the shock wave velocity Us and particle velocity up can be described linearly by Us = 4.324(±0.035) + 1.177(±0.012)up. No obvious evidence of phase transition is found in the shock compression pressure range. The calculated Us − up relationship obtained from the additive principle is different from the experimental data, indicating that the α → β phase transition occurs below 28 GPa. The Grüneisen parameter γ obtained from the experimental data can be expressed by γ = 1.277(ρ0/ρ). The zero-pressure bulk modulus B0s = 97.96 GPa and its pressure derivative B′0s = 3.68. The P—V—T equation of state for 47Zr45Ti5Al3V is given using the Vinet equation of state to describe the cold curve and the Debye model for the thermal contributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.