Abstract

Molecular dynamics (MD) simulations were used to model the effects of shock compression on [001] and [221] monocrystals. We obtained the Hugoniot for both directions, and analyzed the formation of a two-wave structure for the [221] monocrystal. We also analyzed the dislocation structure induced by the shock compression along these two crystal orientations. The topology of this structure compares extremely well with that observed in recent transmission electron microscopy (TEM) studies of shock-induced plasticity in samples recovered from flyer plate and laser shock experiments. However, the density of stacking faults in our simulations is 102 to 104 times larger than in the experimental observations of recovered samples. The difference between experimentally observed TEM and calculated MD results is attributed to two effects: (1) the annihilation of dislocations during post-shock relaxation (including unloading) and recovery processes and (2) a much shorter stress rise time at the front in MD (<1 ps) in comparison with flyer-plate shock compression (∼1 ns).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.